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Background: The purpose of our study was to evaluate the relationship between graft placement and in situ graft force
after anterior cruciate ligament (ACL) reconstruction.

Methods: Magnetic resonance imaging (MRI) was obtained for twelve human cadaveric knees. The knees, in intact and
deficient-ACL states, were subjected to external loading conditions as follows: an anterior tibial load of 89 N at 0�, 15�,
30�, 45�, 60�, and 90� of flexion and a combined rotatory (simulated pivot-shift) load of 5 Nm of internal tibial torque and
7 Nm of valgus torque at 0�, 15�, and 30� of flexion. Three ACL reconstructions were performed in a randomized order:
from the center of the tibial insertion site to the center of the femoral insertion site (Mid), the center of the tibial insertion
site to a more vertical femoral position (S1), and the center of the tibial insertion site to an even more vertical femoral
position (S2). The reconstructions were tested following the same protocol used for the intact state, and graft in situ force
was calculated for the two loadings at each flexion angle. MRI was used to measure the graft inclination angle after each
ACL reconstruction.

Results: The mean inclination angle (and standard deviation) was 51.7� ± 5.0� for the native ACL, 51.6� ± 4.1� for the
Mid reconstruction (p = 0.85), 58.7� ± 5.4� for S1 (p < 0.001), and 64.7� ± 6.5� for S2 (p < 0.001). At 0�, 15�, and 30�
of knee flexion, the Mid reconstruction showed in situ graft force that was closer to that of the native ACL during both
anterior tibial loading and simulated pivot-shift loading than was the case for S1 and S2 reconstructions. At greater
flexion angles, S1 and S2 had in situ graft force that was closer to that of the native ACL than was the case for the Mid
reconstruction.

Conclusions: Anatomic ACL reconstruction exposes grafts to higher loads at lower angles of knee flexion.

Clinical Relevance: Rehabilitation and return to sports progression may need to be modified to protect an anatomically
placed graft after ACL reconstruction.

D
espite improved knee function compared with tradi-
tional transtibial surgery1,2, the rate of graft failure
following anatomic anterior cruciate ligament (ACL)

reconstruction has been reported to be as high as 13%3, while the
failure rate for transtibial ACL reconstruction has been reported
to be approximately 7%4,5. A recent study6 showed a cumulative
revision rate at four years of 5.2% for the anteromedial (AM)

portal technique compared with 3.2% for the transtibial ap-
proach. The majority of graft failures following anatomic re-
construction occur six to nine months after surgery3, when it is
common for patients to return to full sports participation, but
when the graft is not fully mature7.

Of seventy-four studies that were reviewed relating to
anatomic reconstruction, van Eck et al. found that only a few
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reported objective methods that documented an anatomic po-
sition of the graft8. Illingworth et al. determined that the normal
ACL is inclined from 43� to 57� degrees in sagittal-viewmagnetic
resonance (MR) reconstructions, a view which serves to deter-
mine if the graft is positioned anatomically9.

Because anatomic placement may be associated with a
higher rate of graft failure, we sought to determine if a more
anatomic positioning of the graft (as indicated by a lower in-
clination angle) caused increased in situ force. Therefore, the
purpose of this study was to determine the in situ force on the
ACL graft and associated knee anterior translations after three
different ACL reconstructions compared with that of the intact
ACL. It was hypothesized that the in situ force in the graft would
decrease with increasing graft inclination angle. It was also hy-
pothesized that differences in graft in situ force may not be
related to the anterior laxity of the knee. If increased in situ force
is observed in an anatomically placed graft, then more conser-
vative postoperative rehabilitation and slower return to sports
progression may be required.

Materials and Methods

Prior approval was obtained for this study from the Committee for Oversight
of Research and Clinical Training Involving Decedents. Twelve cadaveric

knees were used (three from female donors and nine from nine male donors;
mean age at death, 60.9 years [range, thirty-eight to seventy-nine years]). Prior
to testing, magnetic resonance imaging (MRI) and computed tomography
(CT) of the knees was performed to check for any abnormalities and tomeasure
the native ACL inclination angle, according to the methods described by
Illingworth et al.

9
. The knees were frozen at 220�C and thawed twenty-four

hours prior to testing. The soft tissues beyond 15 cm proximal and distal to the
knee joint were removed. The femur and the tibia were potted in cylindrical
molds of an epoxy compound (Bondo; 3M) and mounted to aluminum cyl-
inders. Specimens were kept moist with physiologic saline solution.

Robotic Testing System with Universal Force-Moment
Sensor (UFS)
The joint was defined as being at full extension (0� of flexion) when a small
extension moment, approximately 2 N at 15 cm from the joint line, was applied
to the knee. Other kinematic degrees of freedom (anterior-posterior position,
internal-external rotation, and varus-valgus rotation) were defined as zero in
this configuration.

The femoral cylinder was attached to a fixed base, and the tibial cylinder
was attached to the arm of the robotic testing system (Fig. 1). The testing system
included a robot (CASPAR Stäubli RX90, Orto Maquet) with a UFS (Model

4015; JR3). The repeatability of motion was ± 0.02 mm at each joint for the
robot, and the load cell had an accuracy ± 0.2 N and ± 0.1 Nm, according to the
manufacturers. The system could control the displacement and the forces and
moments applied to the knee in all six degrees of freedom

10
. Control and data

acquisition were accomplished using a MATLAB program (MathWorks).
Similar to that of a previous study

11
, the origin of the tibial coordinate system

was centered in the tibial plateau, with the proximal-distal axis parallel to the
long axis of the tibia, with the medial-lateral axis connecting the medial and
lateral tibial plateau prominences, and with the anterior-posterior axis being
mutually perpendicular to these other two axes.

The six degrees-of-freedom path of passive flexion-extension of the
intact knee was determined in 0.5� increments, from full extension to 90� of
knee flexion

11
, by minimizing forces and moments in the other degrees of

freedom. The knees were tested intact, after ACL resection, and after each ACL
reconstruction. To determine the anterior knee laxity over a range of flexion
values, an anterior tibial load of 89 N (simulating a KT-1000 test)

12,13
was

applied to the specimens at 0�, 15�, 30�, 45�, 60�, and 90� degrees of knee
flexion, as described by Oster et al.

14
. For the anterior knee laxity measure-

ments, the flexion angle was kept fixed while the other degrees of freedomwere
allowed to vary so as to achieve a force of 89 N in the anterior direction and

Fig. 1

The robotic system used in the study. The specimen was placed in an

inverted position.

TABLE I Anterior Tibial Translation (mm) During Anterior Loading by Knee Flexion Angle*

0� 15� 30� 45� 60� 90�

Intact native ACL 4.8 ± 1.2 6.7 ± 0.10 7.2 ± 1.1 6.3 ± 1.1 5.3 ± 0.9 4.8 ± 1.0

ACL-deficient 10.3 ± 2.3† 15.8 ± 2.8† 16.0 ± 3.2† 13.3 ± 3.7† 10.8 ± 3.1† 6.8 ± 6.4

Mid reconstruction 3.8 ± 1.4‡ 7.2 ± 1.3 7.1 ± 5.2 8.2 ± 1.2† 7.3 ± 1.1† 7.0 ± 1.5

S1 reconstruction 6.2 ± 1.3† 8.9 ± 2.1† 8.8 ± 2.0‡ 7.6 ± 2.3 6.3 ± 2.3 5.0 ± 2.1

S2 reconstruction 7.6 ± 2.4† 10.8 ± 2.3† 10.3 ± 2.3† 8.1 ± 2.2‡ 6.3 ± 2.1 3.5 ± 3.6

*The values are presented as the mean and the standard deviation. †Significantly different from intact native ACL at p < 0.001. ‡Significantly
different from intact native ACL at p < 0.01.
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minimize the other forces andmoments. This mimicked an anterior drawer test
at a fixed knee flexion angle, where an anterior load is applied and other degrees
of freedom are unconstrained. No compressive loading was applied to the joint.
Loads were applied at a slow rate, approximately 5mm/min, a situation that can
be considered quasi-static loading.

To assess rotational knee behavior, a simulated pivot-shift test was
performed, whereby combined 5-Nm internal tibial and 7-Nm valgus torques
were applied at fixed flexion angles of 0�, 15�, and 30�, with the other kinematic
degrees of freedom again being unconstrained

15-17
.

ACL Reconstructions
Under arthroscopic visualization, using the three-portal technique

18
, the ACL

was resected and its remnants preserved. Three femoral tunnels were created in
the lateral wall of the intercondylar notch, using an outside-in drilling tech-
nique. A 7-mm drill bit was chosen to allow the drilling of the three tunnels
with a 2-mm wall between each (as measured with an arthroscopic ruler prior
to creating each subsequent tunnel). The first tunnel (Mid) was positioned in
the center of the ACL insertion site, which was identified by the tissue remnants
and the intercondylar and bifurcate ridges. The second tunnel (S1) was more
vertical/superior and was drilled toward the “high AM” position. The third
tunnel (S2) was even more vertical/superior. Note that the S1 and S2 femoral
tunnels were not intentionally drilled to simulate the isometric position. Rather,
those femoral tunnels were positioned so as to incrementally increase the graft
inclination angle as measured on sagittal MRI. A single 7-mm tunnel was
drilled in the center of the ACL tibial insertion site (Mid) (Fig. 2). After the
tunnels were created, each knee was tested in the ACL-deficient state.

The three ACL reconstructions were performed in random order. For
each knee, all three reconstructions used the same hamstring graft (Fig. 3). We
secured the graft with a post screw and spiked washer on both the tibial and
femoral sides. The graft was fixed at 15� degrees of knee flexion (measured with
a manual goniometer), according to the senior author’s (F.H.F.’s) protocol for
single-bundle ACL reconstruction. This involved 40 N of tension, applied with
use of a manual tensiometer (Smith & Nephew). This tension was based on
previous studies of ACL single-bundle reconstruction

19,20
. After each recon-

struction, the knees were biomechanically tested using the robotic system and
underwent MRI with the graft in place to measure graft inclination

9
. A final CT

scan was obtained to illustrate the position of the femoral tunnels in a three-
dimensional (3-D) image.Mimics software (Materialise) was used to create 3-D

Fig. 2

Figs. 2-A and 2-B The femoral and tibial tunnels. Fig. 2-A The Mid, S1, and S2 femoral tunnels, with a 2-mm distance between them. Fig. 2-B The tibial

tunnel in the center of the tibial footprint (Mid position). CP = central portal, and LP = lateral portal.

Fig. 3

Figs. 3-A, 3-B, and 3-C The three ACL reconstructions with increasing vertical graft positioning. Fig. 3-A The center of the tibial insertion site (Mid) to

the center of the femoral insertion side (Mid). Fig 3-B Tibial Mid to femoral S1. Fig. 3-C Tibial Mid to femoral S2. LP = lateral portal.

TABLE II Anterior Tibial Translation (mm) During Simulated
Pivot-Shift Loading by Knee Flexion Angle*

0� 15� 30�

Intact native ACL 2.4 ± 1.5 4.5 ± 2.9 5.7 ± 3.4

ACL-deficient 4.5 ± 2.8† 7.1 ± 3.9† 6.8 ± 4.0‡

Mid reconstruction 2.3 ± 1.5 4.5 ± 2.7 5.0 ± 2.9

S1 reconstruction 3.5 ± 2.2‡ 6.3 ± 3.5§ 6.3 ± 3.6

S2 reconstruction 3.9 ± 2.0† 6.8 ± 3.5† 6.9 ± 3.6†

*The values are presented as the mean and the standard
deviation. †Significantly different from intact native ACL at p <
0.01. ‡Significantly different from intact native ACL at p < 0.05.
§Significantly different from intact native ACL at p < 0.001.
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reconstructions to verify the tunnel position and the increasingly vertical lo-
cation on the lateral wall of the intercondylar notch (Fig. 4).

In Situ Force
After each ACL reconstruction, external loads were applied to the reconstructed
knee, and the motion was measured. After removal of the graft, the motion was
replayed to determine the in situ force experienced by the graft. By the principle
of superposition, the change in the force before versus after graft removal, with
the knee in the same position, represents the in situ force in the graft

11
.

Data Analysis
Data analysis began with the calculation of descriptive statistics, including fre-
quency counts and percentages for frequency variables, and measures of central
tendency (means and medians) and dispersion (standard deviation and inter-
quartile range) for continuous variables. Separate general linear models (GLMs)
were created with a single within-subjects factor (with five levels: intact ACL,
transected ACL, Mid reconstruction, S1 reconstruction, and S2 reconstruction) to
detect differences in the in situ force and inclination angle between the native ACL,
transected ACL, and each femoral tunnel placement. To determine if the in situ

force for each reconstructionwas significantly different from that of the intact ACL,
planned pairwise contrasts were performed using paired t tests to compare the
amount of force. The level of significance for all statistical tests was set at p < 0.05.

Source of Funding
This study was supported by a grant from the Albert B. Ferguson, MD Ortho-
paedic Fund of the Pittsburgh Foundation and received financial project support
from the University of Pittsburgh Medical Center, Department of Orthopaedic
Surgery. The funding sources did not play a role in the investigation.

Results

The mean (and standard deviation) of the inclination angle
for the native ACL was 51.7� ± 5.0�. The graft inclination

angle increased significantly in comparison with the native ACL
for the S1 (58.7�± 5.4�; p < 0.001) and S2 (64.7�± 6.5�; p < 0.001)
reconstructions. However, there was no significant difference in
inclination angle between the native ACL and Mid reconstruction
(51.6� ± 4.1�; p = 0.85).

Fig. 4

Figs. 4-A and 4-B Femoral tunnel placement. Fig 4-A 3-D CT scan confirming the femoral tunnel in the Mid (anatomic), S1, and S2 positions, which

were increasingly vertical. The tibial tunnel (right panel)was in the center of the anatomic insertion site.Fig. 4-BThe inclination angleof the nativeACLandof

each of the reconstructions in a typical specimen, attesting to increasingly vertical positioning of the graft.

TABLE III In Situ Force (N) in the Native ACL and Graft During Anterior Tibial Loading by Knee Flexion Angle*

0� 15� 30� 45� 60� 90�

Intact native ACL 77.9 ± 11.1 82.8 ± 8.7 75.3 ± 9.6 65.2 ± 13.5 54.8 ± 14.4 53.3 ± 13.4

Mid reconstruction 78.6 ± 6.9 78.3 ± 10.1† 63.7 ± 15.0‡ 44.1 ± 18.6§ 31.2 ± 19.9§ 25.9 ± 14.6§

S1 reconstruction 59.6 ± 13.3§ 71.3 ± 14.1§ 62.1 ± 17.2§ 49.3 ± 19.5§ 39.5 ± 19.9§ 39.9 ± 19.5‡

S2 reconstruction 47.1 ± 16.8§ 61.7 ± 18.9‡ 56.8 ± 21.4‡ 48.9 ± 19.8‡ 41.0 ± 23.4‡ 48.9 ± 20.5

*The values are given as the mean and the standard deviation. †Significantly different from intact native ACL at p < 0.05. ‡Significantly different
from intact native ACL at p < 0.01. §Significantly different from intact native ACL at p < 0.001.
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The anterior tibial translation during anterior tibial
loading and simulated pivot-shift loading are given in Table I
and Table II, respectively.

The in situ force in the native ACL and graft for each
reconstruction at 0�, 15�, 30�, 45�, 60�, and 90� of flexion
during anterior tibial loading are given in Table III and for the
simulated pivot-shift loading at 0�, 15�, and 30� of flexion in
Table IV.

Discussion

Wefound that, for knee flexion of £30�, lower positioning
of the graft, represented by the Mid reconstruction, was

associated with in situ graft force that was not significantly
different from that in the native ACL, specifically under ante-
rior tibial loading at 0� of knee flexion, and at 15� and 30� of
knee flexion during the simulated pivot shift. In addition, the
Mid reconstruction better restored the intact ACL knee anterior
laxity at lower flexion angles, while the vertical reconstructions
better restored the laxity at higher flexion angles.

Changing the graft location on the femur from the ana-
tomic (Mid) position to the more vertical (S1) and even more
vertical (S2) positions led to an increase in the graft inclination
angle and a decrease in graft in situ forces during the simulated
pivot-shift test. The Mid position better restored the knee laxity
under simulated pivot-shift loading.

These results indicate that, compared with nonanatomi-
cally placed grafts (S1 and S2), an anatomic graft (Mid) may be
at higher risk for failure when the knee is positioned at £30�
of flexion, which includes the range where most ACL injuries
occur21.

At ‡45� of knee flexion, higher tunnel position led to
increasingly higher in situ graft force, closer to the loads in the
native ACL. Kato et al.22 found that the vertical position of the
femoral tunnel in the so-called “PL (posterolateral) to high AM”

graft position produced greater in situ force compared with a
lower graft (mid-tibial insertion to mid-femoral insertion) re-
construction at >30� of knee flexion. Sakane et al. found that the
AM bundle has higher in situ force at larger angles of knee
flexion, while the PL bundle has higher in situ force at lower
angles of knee flexion11. A possible explanation for the present
findings is that the S1 and S2 femoral tunnels were more vertical
and more representative of the AM bundle position. However,
despite the higher in situ force experienced by the more vertical

grafts (the S1 and S2 reconstructions) during anterior tibial
loading at ‡45� of flexion, the graft may not be at correspond-
ingly greater risk for injury, because the ACL is rarely injured
with the knee in this position21. We found that knee anterior
laxity was related to the graft in situ force, with a greater force
being found in knees with lower laxity.

Sim et al. studied native ACL and ACL graft in situ force
and kinematics for ACL reconstructions performed by drilling
the femoral tunnel using the AM portal or transtibial technique
or a two-incision outside-in approach20. Anatomic ACL recon-
structionwas achieved only when the femoral tunnel was created
using the AM portal or outside-in approaches. They found no
differences between the intact ACL and the ACL graft in situ
force for any of the reconstruction methods during anterior
tibial loading. Those results differ from those observed in the
current study; no significant differences were found between the
native ACL and the anatomically placed ACL graft in situ force
under anterior tibial loading at 0� of knee flexion, but at the
remaining angles of knee flexion, we found significant differ-
ences between the native ACL versus the anatomic (Mid) re-
construction and native ACL versus the nonanatomic (S1 and
S2) reconstructions. Under a simulated pivot-shift load, Sim
et al. found significant differences between the native ACL and
only the transtibial approach at 0� of knee flexion and between
the native ACL and all of the approaches—transtibial, outside-
in, and AM portal—at 30� of flexion. Their study found that the
graft in situ force was always lower than the native ACL in situ
force, but significantly so only in the cases mentioned above.
Similarly, our study found that, for simulated pivot-shift loading
at 0� of knee flexion, the S2 reconstruction had a lower in situ
force than the intact ACL and that, at 30� of knee flexion, the
force for all reconstructions was lower than that for the intact
ACL, but significantly so only for S1 and S2. On the basis of the
limited data that can be compared between the two studies (i.e.,
at 0� to 30� of knee flexion), in general, the simulated pivot-shift
loads produced higher in situ graft force at low knee flexion
angles (£15�) when the tunnels were placed in an anatomic
position compared with nonanatomic placement.

ACL reconstruction has transitioned toward methods of
“anatomic” reconstruction over the last decade. However, no
changes have been made to the rehabilitation and return-to-
sports guidelines, to account for the increased in situ force that
has been observed with anatomic placement of the graft. van

TABLE IV In Situ Force (N) in the Native ACL and Graft During Simulated Pivot Shift by Knee Flexion Angle*

0� 15� 30�

Intact native ACL 37.1 ± 7.3 48.5 ± 13.4 44.5 ± 23.3

Mid reconstruction 43.4 ± 8.4† 47.0 ± 12.2 36.4 ± 17.1

S1 reconstruction 27.4 ± 12.5 28.5 ± 19.1‡ 20.8 ± 11.4‡

S2 reconstruction 19.8 ± 7.9§ 18.9 ± 10.0§ 14.8 ± 7.3§

*The values are presented as the mean and the standard deviation. †Significantly different from intact native ACL at p < 0.05. ‡Significantly
different from intact native ACL at p < 0.01. §Significantly different from intact native ACL at p < 0.001.
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Eck et al. reported failure rates of up to 13% for anatomic ACL
reconstructions, either single or double bundle, using allografts
in patients under twenty-five years old3. The peak time for graft
failure was between six and nine months postoperatively, which
is the most commonly recommended time period for return to
sports. Although objective parameters for return to sports (e.g.,
muscle strength and neuromuscular control) may have beenmet
during this time frame, complete graft healing and maturation
may take longer to occur23,24. Similarly, the Danish Knee Liga-
ment Reconstruction Register showed a cumulative revision rate
at four years of 5.2% when an AM portal approach was used to
drill the femoral tunnel—an approach that is expected to pro-
vide a more anatomic placement and, therefore, a lower incli-
nation angle—compared with a 3.2% revision rate for the
transtibial technique6. The higher force experienced by the more
anatomically placed grafts could be a possible explanation for
these findings.

We acknowledge that the nonanatomic ACL reconstruc-
tions performed in this study (S1 and S2) do not correspond to
traditional transtibial reconstruction, because the tibial tunnel
was positioned in the center of the tibial footprint rather than in
the PL insertion site, as is typically done during transtibial re-
construction. However, the inclination angles that resulted from
the S1 and S2 reconstructions were similar to what is frequently
seen in nonanatomic reconstructions in a clinical situation.
Illingworth et al.9 showed that the average sagittal inclination
angle for nonanatomic reconstructions was 62.3� ± 7.8�, and
specifically for transtibial reconstructions, it was 63.5� ± 7.2�. In
the current study, the inclination angle for the S1 and S2 re-
constructions was 58.7� ± 5.4� and 64.7� ± 6.5�, respectively.

Considerable variability was observed in the current study
data. Relatively large standard deviations can occur in the mea-
surements of in situ tissue force20 in both the intact ACL and
reconstructed specimens at certain flexion angles, but we found
no specific pattern. It is assumed that the variation was due to
natural variations in knee osseous and soft-tissue morphology
rather than to any methodological variations.

Our study considered two distinct loading conditions:
anterior tibial loading, replicating a commonly used clinical
test; and simulated pivot-shift test, so as to attempt to replicate
the most common mechanism of ACL tear. The study had the
limitation of the robotic loads being applied quasi-statically

to the knee, and moreover, without muscle forces. While rea-
sonably simulating KT-1000 clinical testing, the study’s ante-
rior tibial loading regime may not be representative of dynamic
physiologic loads. In addition, there was variability in the passive
motion path of each specimen and, therefore, variation in force
and anterior translation results. Another limitation was that the
same hamstring autograft was used for the three reconstructions
in each cadaveric specimen, whichmay have affected graft behavior.
Although the effects of the repeated graft use are unknown, the
loads placed on the graft were relatively low. To minimize possible
bias in the results, the order in which each reconstruction was
made was randomized.

In conclusion, our study demonstrated that the anatomic
(Mid) ACL reconstruction resulted in a lower graft inclination
angle than that of nonanatomic ACL reconstruction; the Mid
inclination angle was closer to the native ACL inclination angle.
The anatomic (Mid) ACL reconstruction led to graft force and
knee anterior laxity closer to those of the native knee for both
anterior tibial load and simulated pivot-shift load at £30� of knee
flexion. Finally, at £30� of knee flexion, the in situ ACL graft force
decreased as the inclination angle increased, which we attribute to
locating the femoral tunnel at a higher position on the lateral wall
of the intercondylar notch. n
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